日韩av在线播放中文字幕_国产一区在线不卡_极品美女销魂一区二区三区免费 _久热成人在线视频_精品亚洲国产成人av制服丝袜_99久久国产综合色|国产精品_久久99精品国产91久久来源_成人污污视频在线观看_日韩福利视频网_a在线播放不卡

安詩曼工業(yè)除濕機(jī)廠家專業(yè)生產(chǎn)工業(yè)除濕機(jī),家用除濕機(jī),商用除濕機(jī)等產(chǎn)品,歡迎來電咨詢定制。 公司簡介 | 研發(fā)團(tuán)隊(duì) | 網(wǎng)站地圖 | xml地圖
安詩曼-精芯除濕·致凈生活環(huán)境溫度濕度系統(tǒng)化解決方案供應(yīng)商
全國咨詢熱線:133-6050-3273
您的位置:新聞資訊 > 行業(yè)動(dòng)態(tài) > 冷媒檢測方法、裝置、除濕機(jī)及設(shè)備與流程

冷媒檢測方法、裝置、除濕機(jī)及設(shè)備與流程

作者:CEO 時(shí)間:2023-03-01

信息摘要:本發(fā)明涉及電器技術(shù)領(lǐng)域,尤其涉及一種冷媒檢測方法、裝置、除濕機(jī)及設(shè)備。背景技術(shù):目前,冷媒檢測方法是基于專家經(jīng)驗(yàn),在觀察和研究機(jī)器實(shí)際運(yùn)行參數(shù)的基礎(chǔ)上制定的。雖然這種方法取得了不錯(cuò)的效果,但是由于如除濕機(jī)這類基于冷媒的設(shè)備內(nèi)部結(jié)構(gòu)復(fù)雜,運(yùn)行過程中各狀態(tài)量之間的耦合關(guān)系和變化規(guī)律難以完全掌握,且

冷媒檢測方法、裝置、除濕機(jī)及設(shè)備與流程

冷媒檢測方法、裝置、除濕機(jī)及設(shè)備與流程

  本發(fā)明涉及電器技術(shù)領(lǐng)域,尤其涉及一種冷媒檢測方法、裝置、除濕機(jī)及設(shè)備。

  背景技術(shù):

  目前,冷媒檢測方法是基于專家經(jīng)驗(yàn),在觀察和研究機(jī)器實(shí)際運(yùn)行參數(shù)的基礎(chǔ)上制定的。雖然這種方法取得了不錯(cuò)的效果,但是由于如除濕機(jī)這類基于冷媒的設(shè)備內(nèi)部結(jié)構(gòu)復(fù)雜,運(yùn)行過程中各狀態(tài)量之間的耦合關(guān)系和變化規(guī)律難以完全掌握,且專家經(jīng)驗(yàn)存在一定的主觀性等原因,導(dǎo)致控制規(guī)則復(fù)雜,泛化能力有待提升?,F(xiàn)有冷媒檢測判斷邏輯中存在判斷單一、適應(yīng)性差的缺陷。

  技術(shù)實(shí)現(xiàn)要素:

  本發(fā)明的主要目的在于克服上述現(xiàn)有技術(shù)的缺陷,提供了一種冷媒檢測方法、裝置、除濕機(jī)及設(shè)備,以解決現(xiàn)有技術(shù)的冷媒檢測方法主觀性強(qiáng)、泛化能力和適應(yīng)性差的問題。

  本發(fā)明一方面提供了一種冷媒檢測方法,包括:收集除濕機(jī)的運(yùn)行參數(shù),所述運(yùn)行參數(shù)包括:環(huán)境溫度、環(huán)境濕度、蒸發(fā)器溫度和/或排氣溫度;建立神經(jīng)網(wǎng)絡(luò)模型,將所述收集到的運(yùn)行參數(shù)作為輸入值,輸出結(jié)果冷媒比例,所述冷媒比例為剩余的冷媒量與冷媒的標(biāo)準(zhǔn)量之比,所述冷媒的標(biāo)準(zhǔn)量為所述除濕機(jī)標(biāo)定的冷媒灌注量。

  可選地,還包括:在所述冷媒比例小于等于預(yù)設(shè)的比例閾值時(shí)判斷為冷媒余量不足。

  可選地,所述神經(jīng)網(wǎng)絡(luò)模型包括:bp神經(jīng)網(wǎng)絡(luò)模型、卷積神經(jīng)網(wǎng)絡(luò)模型或者殘差神經(jīng)網(wǎng)絡(luò)模型。

  可選地,還包括:將訓(xùn)練好的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)上傳到服務(wù)器端;在所述服務(wù)器端根據(jù)從至少一個(gè)地區(qū)上傳的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)對所述神經(jīng)網(wǎng)絡(luò)模型進(jìn)行強(qiáng)化訓(xùn)練;從所述服務(wù)器端獲取所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型,用所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型更新現(xiàn)有的所述神經(jīng)網(wǎng)絡(luò)模型。

  可選地,還包括:在判斷為冷媒余量不足的情況下給出故障提示信息和/或?qū)嵤┕收咸幚恚凰鼋o出故障提示信息包括:通過顯示設(shè)備顯示故障提示信息、通過音頻設(shè)備發(fā)出故障提示聲音、和/或通過警示燈給出故障提示信息;所述實(shí)施故障處理包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。

  本發(fā)明的另一方面又提供了一種冷媒檢測裝置,包括:收集單元,用于收集除濕機(jī)的運(yùn)行參數(shù),所述運(yùn)行參數(shù)包括:環(huán)境溫度、環(huán)境濕度、蒸發(fā)器溫度和/或排氣溫度;建模單元,用于建立神經(jīng)網(wǎng)絡(luò)模型,將所述收集到的運(yùn)行參數(shù)作為輸入值,輸出結(jié)果為冷媒比例,所述冷媒比例為剩余的冷媒量與冷媒的標(biāo)準(zhǔn)量之比,所述冷媒的標(biāo)準(zhǔn)量為所述除濕機(jī)標(biāo)定的冷媒灌注量。

  可選地,還包括判斷單元,用于在所述冷媒比例小于等于預(yù)設(shè)的比例閾值時(shí)判斷為冷媒余量不足。

  可選地,所述神經(jīng)網(wǎng)絡(luò)模型包括:bp神經(jīng)網(wǎng)絡(luò)模型、卷積神經(jīng)網(wǎng)絡(luò)模型或者殘差神經(jīng)網(wǎng)絡(luò)模型。

  可選地,還包括:第一通訊單元,用于將訓(xùn)練好的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)上傳到服務(wù)器端;更新單元,用于從所述服務(wù)器端獲取所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型,用所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型更新現(xiàn)有的所述神經(jīng)網(wǎng)絡(luò)模型,所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型是在所述服務(wù)器端根據(jù)從至少一個(gè)地區(qū)上傳的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)對所述神經(jīng)網(wǎng)絡(luò)模型進(jìn)行強(qiáng)化訓(xùn)練后得到的神經(jīng)網(wǎng)絡(luò)模型。

  可選地,還包括:第一故障處理單元,用于在判斷為冷媒余量不足的情況下給出故障提示信息和/或?qū)嵤┕收咸幚?;所述給出故障提示信息包括:通過顯示設(shè)備顯示故障提示信息、通過音頻設(shè)備發(fā)出故障提示聲音、和/或通過警示燈給出故障提示信息;所述實(shí)施故障處理包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。

  本發(fā)明的又一方面又提供了一種除濕機(jī),具有上述任一項(xiàng)所述的裝置。

  本發(fā)明的再一方面又提供了一種設(shè)備,具有上述任一項(xiàng)所述的裝置。

  可選地,所述設(shè)備為手機(jī)、電腦、服務(wù)器或路由器。

  可選地,還包括:第二通訊單元,用于接收來自除濕機(jī)的運(yùn)行參數(shù),將所述接收到的運(yùn)行參數(shù)作為所述神經(jīng)網(wǎng)絡(luò)模型輸入值;第二故障處理單元,用于根據(jù)所述神經(jīng)網(wǎng)絡(luò)模型的輸出結(jié)果向所述除濕機(jī)發(fā)送控制指令和/或故障提示信息,所述控制指令包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。

  本發(fā)明提供的技術(shù)方案相對于傳統(tǒng)的規(guī)則控制方法,其不依賴于專家經(jīng)驗(yàn);而且通過大量樣本數(shù)據(jù)的學(xué)習(xí),網(wǎng)絡(luò)可以自動(dòng)不斷修正自身參數(shù),該控制算法的檢測準(zhǔn)確率也會隨著學(xué)習(xí)樣本數(shù)據(jù)的增加而增加,該方法具有很強(qiáng)的非線性映射能力、自學(xué)習(xí)和自適應(yīng)能力、泛化能力以及容錯(cuò)能力;另外該控制算法可適用不同的設(shè)備型號,通用性好;還有利用神經(jīng)網(wǎng)絡(luò)算法中泛化的能力增加除濕機(jī)在不同地區(qū)、不同運(yùn)行工況下的適應(yīng)能力,例如在除濕機(jī)的應(yīng)用中,利用神經(jīng)網(wǎng)絡(luò)算法的自學(xué)習(xí)特性可以在后續(xù)收集除濕機(jī)的運(yùn)行數(shù)據(jù),通過收集的數(shù)據(jù)用作后續(xù)對網(wǎng)絡(luò)的加強(qiáng)訓(xùn)練以更新網(wǎng)絡(luò)權(quán)值、偏置,使除濕機(jī)對于冷媒余量不足模式的判斷越來越準(zhǔn)確。

  附圖說明

  此處所說明的附圖用來提供對本發(fā)明的進(jìn)一步理解,構(gòu)成本發(fā)明的一部分,本發(fā)明的示意性實(shí)施例及其說明用于解釋本發(fā)明,并不構(gòu)成對本發(fā)明的不當(dāng)限定。在附圖中:

  圖1是本發(fā)明提供的冷媒檢測方法的整體框架圖;

  圖2是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)模型基本結(jié)構(gòu)示意圖;

  圖3是本發(fā)明提供的冷媒檢測方法的bp神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖;

  圖4是本發(fā)明提供的冷媒檢測方法的卷積神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖;

  圖5是本發(fā)明提供的冷媒檢測方法的殘差神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖;

  圖6是本發(fā)明提供的冷媒檢測方法的殘差塊的結(jié)構(gòu)示意圖;

  圖7是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)模型開發(fā)訓(xùn)練的流程圖;

  圖8是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)模型云數(shù)據(jù)強(qiáng)化訓(xùn)練的流程圖;

  圖9是本發(fā)明提供的冷媒檢測裝置的整體框架圖;

  圖10是本發(fā)明提供的冷媒檢測裝置的一種優(yōu)選實(shí)施例的結(jié)構(gòu)示意圖;

  圖11是本發(fā)明提供的設(shè)備的一種優(yōu)選實(shí)施例的結(jié)構(gòu)示意圖。

  具體實(shí)施方式

  為使本發(fā)明的目的、技術(shù)方案和優(yōu)點(diǎn)更加清楚,下面將結(jié)合本發(fā)明具體實(shí)施例及相應(yīng)的附圖對本發(fā)明技術(shù)方案進(jìn)行清楚、完整地描述。顯然,所描述的實(shí)施例僅是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例?;诒景l(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。

  需要說明的是,本發(fā)明的說明書和權(quán)利要求書及上述附圖中的術(shù)語“第一”、“第二”等是用于區(qū)別類似的對象,而不必用于描述特定的順序或先后次序。應(yīng)該理解這樣使用的數(shù)據(jù)在適當(dāng)情況下可以互換,以便這里描述的本發(fā)明的實(shí)施例能夠以除了在這里圖示或描述的那些以外的順序?qū)嵤?。此外,術(shù)語“包括”和“具有”以及他們的任何變形,意圖在于覆蓋不排他的包含,例如,包含了一系列步驟或單元的過程、方法、系統(tǒng)、產(chǎn)品或設(shè)備不必限于清楚地列出的那些步驟或單元,而是可包括沒有清楚地列出的或?qū)τ谶@些過程、方法、產(chǎn)品或設(shè)備固有的其它步驟或單元。

  本發(fā)明一方面提供了一種冷媒檢測方法。圖1是本發(fā)明提供的冷媒檢測方法的整體框架圖;如圖1所示,本發(fā)明冷媒檢測方法包括:步驟s110,收集除濕機(jī)的運(yùn)行參數(shù),所述運(yùn)行參數(shù)包括:環(huán)境溫度、環(huán)境濕度、蒸發(fā)器溫度和/或排氣溫度;步驟s120,建立神經(jīng)網(wǎng)絡(luò)模型,將所述收集到的運(yùn)行參數(shù)作為輸入值,輸出結(jié)果為冷媒比例,所述冷媒比例為剩余的冷媒量與冷媒的標(biāo)準(zhǔn)量之比,所述冷媒的標(biāo)準(zhǔn)量為所述除濕機(jī)銘牌上標(biāo)定的冷媒灌注量。根據(jù)本發(fā)明冷媒檢測方法的一種實(shí)施方式,還包括:在所述冷媒比例小于等于預(yù)設(shè)的比例閾值時(shí)判斷為冷媒余量不足。

  本發(fā)明利用人工神經(jīng)網(wǎng)絡(luò)算法,運(yùn)用大量除濕機(jī)冷媒泄漏時(shí)的運(yùn)行參數(shù)樣本,對神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)和訓(xùn)練。通過調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)及網(wǎng)絡(luò)節(jié)點(diǎn)間的權(quán)值,使神經(jīng)網(wǎng)絡(luò)擬合除濕機(jī)運(yùn)行參數(shù)之間的關(guān)系,最終使神經(jīng)網(wǎng)絡(luò)能準(zhǔn)確檢測出冷媒泄漏量。冷媒通常包括r410a,r32,r290等。本發(fā)明提供的技術(shù)方案使用神經(jīng)網(wǎng)絡(luò)算法對冷媒進(jìn)行故障的判斷,神經(jīng)網(wǎng)絡(luò)的使用不僅解決現(xiàn)有專家算法的局限性,另外也利用其自身的自學(xué)習(xí)功能使算法網(wǎng)絡(luò)對于冷媒故障的判斷越來越準(zhǔn)確,泛化能力越來越強(qiáng)。

  圖2是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)算法基本結(jié)構(gòu)示意圖。在不同工況下測試除濕機(jī)系統(tǒng)在不同比例冷媒情況運(yùn)行時(shí),除濕機(jī)各傳感器(蒸發(fā)器溫度、排氣溫度等)數(shù)據(jù),并以此最為神經(jīng)網(wǎng)絡(luò)的輸入?yún)?shù),如圖2所示,各種冷媒的不同比例作為期望輸出量。

  根據(jù)冷媒泄漏的數(shù)據(jù)特性及其所蘊(yùn)含的規(guī)律,可初步確定神經(jīng)網(wǎng)絡(luò)模型的基本結(jié)構(gòu)、網(wǎng)絡(luò)的輸入、輸出節(jié)點(diǎn)數(shù)、網(wǎng)絡(luò)隱層數(shù)、隱節(jié)點(diǎn)數(shù)、網(wǎng)絡(luò)初始權(quán)值等。具體的人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu):bp神經(jīng)網(wǎng)絡(luò)(backpropagationneuralnetwork)模型、卷積神經(jīng)網(wǎng)絡(luò)模型或者殘差神經(jīng)網(wǎng)絡(luò)模型。

  圖3是本發(fā)明提供的冷媒檢測方法的bp神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖。bp網(wǎng)絡(luò)的結(jié)構(gòu)設(shè)計(jì)主要解決設(shè)幾個(gè)隱層和幾個(gè)隱節(jié)點(diǎn)的問題。隱層和隱節(jié)點(diǎn)的確定需在網(wǎng)絡(luò)訓(xùn)練時(shí)不斷的調(diào)整。設(shè)計(jì)時(shí)先設(shè)置一個(gè)隱層,通過調(diào)整隱層節(jié)點(diǎn)數(shù)來改善網(wǎng)絡(luò)性能;當(dāng)隱節(jié)點(diǎn)數(shù)過多,出現(xiàn)過多擬合時(shí),再考慮增加隱層,減少隱節(jié)點(diǎn),來改善網(wǎng)絡(luò)性能。實(shí)際應(yīng)用時(shí)可以根據(jù)需要調(diào)整輸入層、隱層、輸出層節(jié)點(diǎn)數(shù)及隱層層數(shù)。

  圖4是本發(fā)明提供的冷媒檢測方法的卷積神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖。多層卷積網(wǎng)絡(luò)就是從低維度的特征不斷提取合并得到更高維的特征從而可以用來進(jìn)行分類或相關(guān)任務(wù)。不同比例冷媒存量的除濕機(jī)運(yùn)行時(shí),除濕機(jī)的蒸發(fā)器溫度、環(huán)境溫度等傳感器表現(xiàn)出不同的運(yùn)行趨勢,本網(wǎng)絡(luò)的的分類和相關(guān)任務(wù)就是從不同比例冷媒存量除濕機(jī)的標(biāo)準(zhǔn)數(shù)據(jù)中找出相應(yīng)的運(yùn)行特征,并根據(jù)提取的相應(yīng)特征判斷出當(dāng)前的冷媒存量。卷積網(wǎng)絡(luò)通用結(jié)構(gòu)為輸入層——卷積層——全連接層——輸出層,中間的卷積層輸出都是從輸入數(shù)據(jù)提取的特征。卷積神經(jīng)網(wǎng)絡(luò)與普通的bp神經(jīng)網(wǎng)絡(luò)相比,卷積神經(jīng)網(wǎng)絡(luò)提出的是輸入數(shù)據(jù)不同區(qū)域的相對特征,在數(shù)據(jù)相對時(shí)移時(shí)不影響網(wǎng)絡(luò)的正常判斷。

  圖5是本發(fā)明提供的冷媒檢測方法的殘差神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)示意圖。在調(diào)試卷積神經(jīng)網(wǎng)絡(luò)時(shí),加深網(wǎng)絡(luò)層數(shù)和改變卷積核大小的方法并不能使得網(wǎng)絡(luò)表現(xiàn)得到提升。加入殘差塊可以更好地連接前后數(shù)據(jù),加強(qiáng)特征表達(dá)能力,所以其能夠加強(qiáng)卷積網(wǎng)絡(luò)的學(xué)習(xí)能力。圖6是本發(fā)明提供的冷媒檢測方法的殘差塊的結(jié)構(gòu)示意圖。如圖6某段神經(jīng)網(wǎng)絡(luò)的輸入為x,期望輸出為h(x),把輸入x傳入到輸出作為初始結(jié)構(gòu)后,需要學(xué)習(xí)的目標(biāo)就變?yōu)閒(x)=h(x)-x。

  圖7是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)模型開發(fā)訓(xùn)練的流程圖。如圖7所示,以bp神經(jīng)網(wǎng)絡(luò)模型為例,首先是設(shè)計(jì)實(shí)驗(yàn)方案獲取輸入數(shù)據(jù);然后搭建網(wǎng)絡(luò)模型,確定輸入節(jié)點(diǎn)數(shù)m、隱層節(jié)點(diǎn)數(shù)n、輸出節(jié)點(diǎn)數(shù)l(參見圖3);接下來挑選部分?jǐn)?shù)據(jù)訓(xùn)練網(wǎng)絡(luò)參數(shù),更新權(quán)值w和偏置閾值b;之后再判斷準(zhǔn)確度是否滿足要求,若否則繼續(xù)訓(xùn)練參數(shù)更新權(quán)值w和偏置閾值b;若是則挑選部分?jǐn)?shù)據(jù)測試網(wǎng)絡(luò);之后再判斷準(zhǔn)確度是否滿足要求,若否則繼續(xù)訓(xùn)練參數(shù)更新權(quán)值w和偏置閾值b;若是則開發(fā)訓(xùn)練過程結(jié)束。以上過程具體步驟可分為數(shù)據(jù)預(yù)處理階段、網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)階段、本地訓(xùn)練階段和云數(shù)據(jù)強(qiáng)化訓(xùn)練階段。

  其一,數(shù)據(jù)預(yù)處理階段包括:

  1)原始數(shù)據(jù)搜集

  搜集除濕機(jī)在冷媒泄漏時(shí),在所有可能的運(yùn)行環(huán)境下的運(yùn)行參數(shù),并進(jìn)行詳細(xì)標(biāo)注,標(biāo)注的內(nèi)容包括不同的冷媒存量運(yùn)行時(shí),除濕機(jī)的蒸發(fā)器溫度、環(huán)境溫度等傳感器的運(yùn)行數(shù)據(jù)。具體搜集方式包括但不限于除濕機(jī)在實(shí)驗(yàn)室模擬環(huán)境下的運(yùn)行參數(shù)、通過物聯(lián)網(wǎng)技術(shù)搜集實(shí)際用戶使用時(shí)的空調(diào)運(yùn)行參數(shù)等方式。

  2)輸入、輸出參數(shù)選擇及預(yù)處理

  通過對原始數(shù)據(jù)的分析和結(jié)合專家知識,選取對冷媒泄漏檢測影響較大且易檢測的參數(shù)作為輸入?yún)?shù),將冷媒剩余量作為輸出量。本發(fā)明中,輸入?yún)?shù)包括但不限于環(huán)境溫度、環(huán)境濕度、蒸發(fā)器溫度、排氣溫度等。輸入?yún)?shù)不僅為單一參數(shù),也包括輸入?yún)?shù)矩陣。

  因各參數(shù)具有不同的物理意義和量綱,還需要對輸入?yún)?shù)作標(biāo)準(zhǔn)化處理,然后再進(jìn)行統(tǒng)一的變換處理。本發(fā)明中,數(shù)據(jù)處理方法,包括但不限于,對數(shù)據(jù)進(jìn)行歸一化等線性處理及對數(shù)變換、平方根變換、立方根變換等非線性處理。

  3)訓(xùn)練和測試數(shù)據(jù)樣本集選取

  通過對已搜集并標(biāo)注數(shù)據(jù)的分析和結(jié)合專家知識,對數(shù)據(jù)樣本按一定的規(guī)則進(jìn)行分類,比如按照不同比例的冷媒存量運(yùn)行作為一個(gè)表格儲存分類。從不同類別的樣本中,均勻提取數(shù)據(jù),作為訓(xùn)練樣本。訓(xùn)練樣本不僅要蘊(yùn)含冷媒泄漏的規(guī)律,還要體現(xiàn)出多樣性和均勻性。列出所有的樣本數(shù)據(jù),然后按一定的間隔讀取作為訓(xùn)練樣本數(shù)據(jù);提取出訓(xùn)練樣本后,剩余的數(shù)據(jù)可作為測試數(shù)據(jù)。

  其二,網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)階段

  本發(fā)明中所使用的人工神經(jīng)網(wǎng)絡(luò),不限定于某一種網(wǎng)絡(luò)結(jié)構(gòu),可以是經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)如bp神經(jīng)網(wǎng)絡(luò),也可以是高級人工神經(jīng)網(wǎng)絡(luò),或者深度學(xué)習(xí)網(wǎng)絡(luò)如cnn(convolutionalneuralnetwork,卷積神經(jīng)網(wǎng)絡(luò))。

  其三,本地訓(xùn)練階段

  根據(jù)本發(fā)明冷媒檢測方法的一種實(shí)施方式,所述神經(jīng)網(wǎng)絡(luò)模型的激活函數(shù)采用sigmod函數(shù):σ(z)=1/(1+e-z)。在訓(xùn)練之前要初始化網(wǎng)絡(luò)的各層之間的權(quán)值wk偏置bl;確定網(wǎng)絡(luò)的輸出精度∈;確定網(wǎng)絡(luò)的學(xué)習(xí)速度η;確定網(wǎng)絡(luò)的最大訓(xùn)練步長:epoch。

  根據(jù)前期獲得測試數(shù)據(jù),挑選部分實(shí)驗(yàn)數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),另外一部分作為測試數(shù)據(jù),導(dǎo)入輸入數(shù)據(jù)x,根據(jù)激活函數(shù)、初始化的權(quán)值及偏置計(jì)算出網(wǎng)絡(luò)的實(shí)際輸出al(x),即al(x)=1/(1+e-z),其中z=wk*x+bl。

  判斷網(wǎng)絡(luò)的期望輸出y(x)與實(shí)際輸出al(x)是否滿足輸出精度要求即:‖y(x)-al(x)‖<∈

  如果滿足精度要求則結(jié)束訓(xùn)練,如不滿足則根據(jù)以下方式更新網(wǎng)絡(luò)的權(quán)值wk,偏置bl:所述神經(jīng)網(wǎng)絡(luò)模型的誤差能量函數(shù)采用c(w,b)為誤差能量函數(shù)(以標(biāo)準(zhǔn)方差函數(shù)為例),n為訓(xùn)練樣本的總數(shù)量,求和是在總的訓(xùn)練樣本x上進(jìn)行。

  更新各層權(quán)值:

  更新各層偏置:

  其中:wk為初始權(quán)值,為誤差能量函數(shù)對權(quán)值的偏導(dǎo)數(shù);bl為初始偏置,為誤差能量函數(shù)對偏置的偏導(dǎo)數(shù);的值可通過鏈?zhǔn)角髮?dǎo)法則獲得。直至網(wǎng)絡(luò)的輸出精度達(dá)到小于∈為止。

  最后進(jìn)行網(wǎng)絡(luò)測試:網(wǎng)絡(luò)訓(xùn)練完成后,再用測試樣本正向測試網(wǎng)絡(luò)。在測試數(shù)據(jù)中挑選部分?jǐn)?shù)據(jù)測試訓(xùn)練好的網(wǎng)絡(luò),判斷輸出是否滿足期望要求,如不滿足則則重復(fù)以上步驟,重新訓(xùn)練網(wǎng)絡(luò)直至滿足網(wǎng)絡(luò)輸出滿足要求;若測試誤差滿足要求,則網(wǎng)絡(luò)訓(xùn)練測試完成。

  其四,云數(shù)據(jù)強(qiáng)化訓(xùn)練階段

  圖8是本發(fā)明提供的冷媒檢測方法的神經(jīng)網(wǎng)絡(luò)模型云數(shù)據(jù)強(qiáng)化訓(xùn)練的流程圖。如圖8所示,根據(jù)本發(fā)明冷媒檢測方法的一種實(shí)施方式,還包括:將訓(xùn)練好的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)上傳到服務(wù)器端;在所述服務(wù)器端根據(jù)從至少一個(gè)地區(qū)上傳的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)對所述神經(jīng)網(wǎng)絡(luò)模型進(jìn)行強(qiáng)化訓(xùn)練;從所述服務(wù)器端獲取所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型,用所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型更新現(xiàn)有的所述神經(jīng)網(wǎng)絡(luò)模型。具體地,將訓(xùn)練好的網(wǎng)絡(luò)集成的除濕機(jī)的無線模塊,不同地區(qū)的除濕機(jī)上電運(yùn)行后將實(shí)際的運(yùn)行數(shù)據(jù)傳到后臺云端,云端根據(jù)除濕機(jī)上傳的實(shí)際運(yùn)行數(shù)據(jù)定期對現(xiàn)有網(wǎng)絡(luò)強(qiáng)化訓(xùn)練,將強(qiáng)化訓(xùn)練后的網(wǎng)絡(luò)通過除濕機(jī)無線模塊在線更新網(wǎng)絡(luò),以滿足實(shí)際的運(yùn)行需要,使網(wǎng)絡(luò)的對于冷媒故障的判斷越來越準(zhǔn)確,泛化能力越來越強(qiáng)。

  根據(jù)本發(fā)明冷媒檢測方法的一種實(shí)施方式,還包括:在判斷為冷媒余量不足的情況下給出故障提示信息和/或?qū)嵤┕收咸幚恚凰鼋o出故障提示信息包括:通過顯示設(shè)備顯示故障提示信息、通過音頻設(shè)備發(fā)出故障提示聲音、和/或通過警示燈給出故障提示信息;所述實(shí)施故障處理包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。具體地,當(dāng)檢測到冷媒泄露后,通過除濕機(jī)的led燈或lcd顯示屏顯示缺氟故障代碼,發(fā)現(xiàn)故障及時(shí)給出提示和實(shí)施處理可以確保設(shè)備安全運(yùn)行。

  本發(fā)明的另一方面又提供了一種冷媒檢測裝置。圖9是本發(fā)明提供的冷媒檢測裝置的整體框架圖。如圖9所示,本發(fā)明冷媒檢測裝置包括:收集單元100,用于收集除濕機(jī)的運(yùn)行參數(shù),所述運(yùn)行參數(shù)包括:環(huán)境溫度、環(huán)境濕度、蒸發(fā)器溫度和/或排氣溫度;建模單元200,用于建立神經(jīng)網(wǎng)絡(luò)模型,將所述收集到的運(yùn)行參數(shù)作為輸入值,輸出結(jié)果為冷媒比例,所述冷媒比例為剩余的冷媒量與冷媒的標(biāo)準(zhǔn)量之比,所述冷媒的標(biāo)準(zhǔn)量為所述除濕機(jī)標(biāo)定的冷媒灌注量。

  圖10是本發(fā)明提供的冷媒檢測裝置的一種優(yōu)選實(shí)施例的結(jié)構(gòu)示意圖。如圖10所示,根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,還包括判斷單元300,用于在所述冷媒比例小于等于預(yù)設(shè)的比例閾值時(shí)判斷為冷媒余量不足。

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,所述神經(jīng)網(wǎng)絡(luò)模型包括:bp神經(jīng)網(wǎng)絡(luò)模型、卷積神經(jīng)網(wǎng)絡(luò)模型或者殘差神經(jīng)網(wǎng)絡(luò)模型。

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,所述神經(jīng)網(wǎng)絡(luò)模型的激活函數(shù)采用sigmod函數(shù):σ(z)=1/(1+e-z)。

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,所述神經(jīng)網(wǎng)絡(luò)模型的誤差能量函數(shù)采用

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,所述裝置還包括:第一通訊單元400,用于將訓(xùn)練好的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)上傳到服務(wù)器端;更新單元500,用于從所述服務(wù)器端獲取所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型,用所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型更新現(xiàn)有的所述神經(jīng)網(wǎng)絡(luò)模型,所述強(qiáng)化訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)模型是在所述服務(wù)器端根據(jù)從至少一個(gè)地區(qū)上傳的所述神經(jīng)網(wǎng)絡(luò)模型的運(yùn)行參數(shù)對所述神經(jīng)網(wǎng)絡(luò)模型進(jìn)行強(qiáng)化訓(xùn)練后得到的神經(jīng)網(wǎng)絡(luò)模型。

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,還包括:參數(shù)處理單元600,用于對所述收集到的運(yùn)行參數(shù)做標(biāo)準(zhǔn)化處理和/或變換處理,所述標(biāo)準(zhǔn)化處理包括歸一化處理,所述變換處理包括對數(shù)變換、平方根變換和/或立方根變換。

  根據(jù)本發(fā)明冷媒檢測裝置的一種實(shí)施方式,還包括:第一故障處理單元700,用于在判斷為冷媒余量不足的情況下給出故障提示信息和/或?qū)嵤┕收咸幚恚凰鼋o出故障提示信息包括:通過顯示設(shè)備顯示故障提示信息、通過音頻設(shè)備發(fā)出故障提示聲音、和/或通過警示燈給出故障提示信息;所述實(shí)施故障處理包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。

  本發(fā)明的又一方面又提供了一種除濕機(jī),具有上述任一項(xiàng)所述的裝置。

  本發(fā)明的再一方面又提供了一種設(shè)備,具有上述任一項(xiàng)所述的裝置。

  根據(jù)本發(fā)明設(shè)備的一種實(shí)施方式,所述設(shè)備為手機(jī)、電腦、服務(wù)器或路由器。

  圖11是本發(fā)明提供的設(shè)備的一種優(yōu)選實(shí)施例的結(jié)構(gòu)示意圖。根據(jù)本發(fā)明設(shè)備的一種實(shí)施方式,所述設(shè)備還包括:第二通訊單元450,用于接收來自除濕機(jī)的運(yùn)行參數(shù),將所述接收到的運(yùn)行參數(shù)作為所述神經(jīng)網(wǎng)絡(luò)模型輸入值;第二故障處理單元750,用于根據(jù)所述神經(jīng)網(wǎng)絡(luò)模型的輸出結(jié)果向所述除濕機(jī)發(fā)送控制指令和/或故障提示信息,所述控制指令包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。所述設(shè)備是指帶有存儲單元的設(shè)備,并不限于手機(jī)、電腦、服務(wù)器或路由器,其功能是獲取除濕機(jī)的運(yùn)行參數(shù),運(yùn)行神經(jīng)網(wǎng)絡(luò)算法,再將結(jié)果或相應(yīng)的指令發(fā)送給除濕機(jī)。

  本發(fā)明的再一方面又提供了一種計(jì)算機(jī)可讀存儲介質(zhì),其上存儲有計(jì)算機(jī)程序,所述程序被處理器執(zhí)行時(shí)實(shí)現(xiàn)上述任一所述方法的步驟。

  本發(fā)明的又一方面又提供了一種除濕機(jī),包括處理器、存儲器以及存儲在存儲器上可在處理器上運(yùn)行的計(jì)算機(jī)程序,所述處理器執(zhí)行所述程序時(shí)實(shí)現(xiàn)上述任一所述方法的步驟。

  本發(fā)明的又一方面又提供了一種設(shè)備,包括處理器、存儲器以及存儲在存儲器上可在處理器上運(yùn)行的計(jì)算機(jī)程序,所述處理器執(zhí)行所述程序時(shí)實(shí)現(xiàn)上述任一所述方法的步驟。

  根據(jù)本發(fā)明設(shè)備的一種實(shí)施方式,所述設(shè)備包括手機(jī)、電腦、服務(wù)器或路由器。

  根據(jù)本發(fā)明設(shè)備的一種實(shí)施方式,所述處理器執(zhí)行的方法還包括:接收來自除濕機(jī)的運(yùn)行參數(shù),將所述接收到的運(yùn)行參數(shù)作為所述神經(jīng)網(wǎng)絡(luò)模型輸入值;根據(jù)所述神經(jīng)網(wǎng)絡(luò)模型的輸出結(jié)果向所述除濕機(jī)發(fā)送控制指令和/或故障提示信息,所述控制指令包括強(qiáng)制關(guān)停除濕機(jī)的壓縮機(jī)負(fù)載和/或風(fēng)機(jī)負(fù)載。所述設(shè)備是指帶有存儲單元的設(shè)備,并不限于手機(jī)、電腦、服務(wù)器或路由器,其功能是獲取除濕機(jī)的運(yùn)行參數(shù),運(yùn)行神經(jīng)網(wǎng)絡(luò)算法,再將結(jié)果或相應(yīng)的指令發(fā)送給除濕機(jī)。

  本發(fā)明提供的技術(shù)方案相對于傳統(tǒng)的規(guī)則控制方法,其不依賴于專家經(jīng)驗(yàn);而且通過大量樣本數(shù)據(jù)的學(xué)習(xí),網(wǎng)絡(luò)可以自動(dòng)不斷修正自身參數(shù),該控制算法的檢測準(zhǔn)確率也會隨著學(xué)習(xí)樣本數(shù)據(jù)的增加而增加,該方法具有很強(qiáng)的非線性映射能力、自學(xué)習(xí)和自適應(yīng)能力、泛化能力以及容錯(cuò)能力;另外該控制算法可適用不同的設(shè)備型號,通用性好;還有利用神經(jīng)網(wǎng)絡(luò)算法中泛化的能力增加除濕機(jī)在不同地區(qū)、不同運(yùn)行工況下的適應(yīng)能力,例如在除濕機(jī)的應(yīng)用中,利用神經(jīng)網(wǎng)絡(luò)算法的自學(xué)習(xí)特性可以在后續(xù)收集除濕機(jī)的運(yùn)行數(shù)據(jù),通過收集的數(shù)據(jù)用作后續(xù)對網(wǎng)絡(luò)的加強(qiáng)訓(xùn)練以更新網(wǎng)絡(luò)權(quán)值、偏置,使除濕機(jī)對于冷媒余量不足模式的判斷越來越準(zhǔn)確。

  本文中所描述的功能可在硬件、由處理器執(zhí)行的軟件、固件或其任何組合中實(shí)施。如果在由處理器執(zhí)行的軟件中實(shí)施,那么可將功能作為一或多個(gè)指令或代碼存儲于計(jì)算機(jī)可讀媒體上或經(jīng)由計(jì)算機(jī)可讀媒體予以傳輸。其它實(shí)例及實(shí)施方案在本發(fā)明及所附權(quán)利要求書的范圍及精神內(nèi)。舉例來說,歸因于軟件的性質(zhì),上文所描述的功能可使用由處理器、硬件、固件、硬連線或這些中的任何者的組合執(zhí)行的軟件實(shí)施。此外,各功能單元可以集成在一個(gè)處理單元中,也可以是各個(gè)單元單獨(dú)物理存在,也可以兩個(gè)或兩個(gè)以上單元集成在一個(gè)單元中。

  在本申請所提供的幾個(gè)實(shí)施例中,應(yīng)該理解到,所揭露的技術(shù)內(nèi)容,可通過其它的方式實(shí)現(xiàn)。其中,以上所描述的裝置實(shí)施例僅僅是示意性的,例如所述單元的劃分,可以為一種邏輯功能劃分,實(shí)際實(shí)現(xiàn)時(shí)可以有另外的劃分方式,例如多個(gè)單元或組件可以結(jié)合或者可以集成到另一個(gè)系統(tǒng),或一些特征可以忽略,或不執(zhí)行。另一點(diǎn),所顯示或討論的相互之間的耦合或直接耦合或通信連接可以是通過一些接口,單元或模塊的間接耦合或通信連接,可以是電性或其它的形式。

  所述作為分離部件說明的單元可以是或者也可以不是物理上分開的,作為控制裝置的部件可以是或者也可以不是物理單元,既可以位于一個(gè)地方,或者也可以分布到多個(gè)單元上??梢愿鶕?jù)實(shí)際的需要選擇其中的部分或者全部單元來實(shí)現(xiàn)本實(shí)施例方案的目的。

  所述集成的單元如果以軟件功能單元的形式實(shí)現(xiàn)并作為獨(dú)立的產(chǎn)品銷售或使用時(shí),可以存儲在一個(gè)計(jì)算機(jī)可讀取存儲介質(zhì)中。基于這樣的理解,本發(fā)明的技術(shù)方案本質(zhì)上或者說對現(xiàn)有技術(shù)做出貢獻(xiàn)的部分或者該技術(shù)方案的全部或部分可以以軟件產(chǎn)品的形式體現(xiàn)出來,該計(jì)算機(jī)軟件產(chǎn)品存儲在一個(gè)存儲介質(zhì)中,包括若干指令用以使得一臺計(jì)算機(jī)設(shè)備(可為個(gè)人計(jì)算機(jī)、服務(wù)器或者網(wǎng)絡(luò)設(shè)備等)執(zhí)行本發(fā)明各個(gè)實(shí)施例所述方法的全部或部分步驟。而前述的存儲介質(zhì)包括:u盤、只讀存儲器(rom,read-onlymemory)、隨機(jī)存取存儲器(ram,randomaccessmemory)、移動(dòng)硬盤、磁碟或者光盤等各種可以存儲程序代碼的介質(zhì)。

  以上所述僅為本發(fā)明的實(shí)施例而已,并不用于限制本發(fā)明,對于本領(lǐng)域的技術(shù)人員來說,本發(fā)明可以有各種更改和變化。凡在本發(fā)明的精神和原則之內(nèi),所作的任何修改、等同替換、改進(jìn)等,均應(yīng)包含在本發(fā)明的權(quán)利要求范圍之內(nèi)。

聲明:本站部分內(nèi)容和圖片來源于互聯(lián)網(wǎng),經(jīng)本站整理和編輯,版權(quán)歸原作者所有,本站轉(zhuǎn)載出于傳遞更多信息、交流和學(xué)習(xí)之目的,不做商用不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。若有來源標(biāo)注存在錯(cuò)誤或侵犯到您的權(quán)益,煩請告知網(wǎng)站管理員,將于第一時(shí)間整改處理。管理員郵箱:y569#qq.com(#改@)
在線客服
聯(lián)系方式

熱線電話

133-6050-3273

上班時(shí)間

周一到周六

公司電話

133-6050-3273

二維碼
日韩av在线播放中文字幕_国产一区在线不卡_极品美女销魂一区二区三区免费 _久热成人在线视频_精品亚洲国产成人av制服丝袜_99久久国产综合色|国产精品_久久99精品国产91久久来源_成人污污视频在线观看_日韩福利视频网_a在线播放不卡
高清国产一区二区| av成人免费在线观看| 91麻豆免费观看| 免费看精品久久片| 国产成人鲁色资源国产91色综| 不卡在线观看av| 久久电影网站中文字幕| 懂色av中文一区二区三区| 麻豆精品一区二区| 91视视频在线观看入口直接观看www| 久久精品国产在热久久| 97久久久精品综合88久久| 国产精品性做久久久久久| 日本成人在线一区| 91片黄在线观看| 成人性生交大片免费看视频在线| 精品在线免费视频| 美女视频网站久久| 91一区二区在线| 成人污视频在线观看| 国产精品一区二区三区99| 蜜臀av性久久久久蜜臀aⅴ| 成人av在线资源网| 国产精品一卡二卡| 狠狠色丁香久久婷婷综合_中| 91欧美一区二区| 不卡一区中文字幕| 成人激情视频网站| 成人精品视频一区二区三区尤物| 国产精品一区二区黑丝| 国产在线观看免费一区| 久色婷婷小香蕉久久| 日本强好片久久久久久aaa| 99精品1区2区| 99国内精品久久| av不卡在线播放| 波波电影院一区二区三区| 成人精品免费看| av亚洲精华国产精华精华| 国产成人免费在线| 高清不卡一二三区| gogogo免费视频观看亚洲一| 成人国产在线观看| 成人国产精品视频| 99精品视频免费在线观看| 99在线视频精品| 日韩电影在线一区| 免费美女久久99| 日本vs亚洲vs韩国一区三区二区 | 成人国产在线观看| 成人99免费视频| 91在线码无精品| 日韩不卡在线观看日韩不卡视频| 日韩电影在线看| 麻豆视频一区二区| 国模一区二区三区白浆| 国产成人午夜99999| 成人精品国产免费网站| 丝袜美腿亚洲一区| 久久99热99| 成人免费高清在线观看| 日韩激情视频在线观看| 激情综合色综合久久综合| 国产成人综合精品三级| av不卡免费在线观看| 日韩电影在线观看网站| 激情伊人五月天久久综合| 国产成人av电影| 97精品国产露脸对白| 麻豆精品一区二区三区| 国产不卡视频一区二区三区| 三级影片在线观看欧美日韩一区二区 | 成人av电影免费观看| 丝袜美腿亚洲一区二区图片| 国产一区二区三区久久久| 粉嫩13p一区二区三区| 男女激情视频一区| av一区二区三区在线| 99国产精品久久久久| 精品一区二区三区日韩| av成人免费在线观看| 精久久久久久久久久久| 99在线精品免费| 国产精品一区二区你懂的| 91丨porny丨首页| 国产精品66部| 麻豆精品一二三| 99久久精品国产一区二区三区| 蜜臀99久久精品久久久久久软件 | 首页国产欧美久久| 国产福利91精品一区二区三区| 91看片淫黄大片一级在线观看| 国产一区二区免费视频| 丝袜美腿亚洲一区二区图片| 国产成人免费高清| 精品亚洲国产成人av制服丝袜| 91免费视频网址| 福利电影一区二区| 国产精品一区二区三区四区| 蜜桃精品视频在线观看| 91蝌蚪国产九色| 成人免费毛片片v| 国产一区二区三区久久悠悠色av| 毛片av一区二区| 日本不卡视频一二三区| 日韩精品一二区| 91视频在线看| 91丝袜高跟美女视频| av影院午夜一区| 成人免费av网站| 成人精品一区二区三区中文字幕 | 不卡视频在线观看| 国产不卡在线一区| 国产在线麻豆精品观看| 激情久久五月天| 国精产品一区一区三区mba视频 | 9人人澡人人爽人人精品| 福利一区福利二区| 成人永久免费视频| 成人在线视频一区| kk眼镜猥琐国模调教系列一区二区| 国产91丝袜在线观看| 国产91精品久久久久久久网曝门| 国产精品白丝av| 成人涩涩免费视频| av在线这里只有精品| thepron国产精品| 91年精品国产| 免费成人在线观看视频| 蜜臀av一区二区在线观看| 美女一区二区三区在线观看| 精品一区二区在线看| 国产一区二区免费视频| 高潮精品一区videoshd| av网站一区二区三区| 91在线视频免费观看| 天堂va蜜桃一区二区三区漫画版| 日本va欧美va精品发布| 国产一区不卡在线| 成人aaaa免费全部观看| 日本视频一区二区三区| 成人av在线播放网址| 日韩成人午夜电影| 精品写真视频在线观看| 国产91综合一区在线观看| 99久久国产综合精品女不卡| 91免费看片在线观看| 久久99热这里只有精品| 成人一区二区三区视频| 麻豆成人久久精品二区三区小说| 国产福利一区二区三区在线视频| 99久久国产综合精品女不卡| 狠狠色综合播放一区二区| 国产成a人亚洲精品| 日本美女视频一区二区| 国产成人精品三级麻豆| 日韩高清一区在线| 成人夜色视频网站在线观看| 麻豆久久久久久久| 99在线热播精品免费| 国产一区日韩二区欧美三区| 91丨九色丨蝌蚪富婆spa| 国产一区在线观看麻豆| 日韩高清欧美激情| 不卡av在线网| 国产乱码精品一区二区三| 天堂av在线一区| 国产成人在线电影| 精品一区二区三区蜜桃| 91在线视频观看| 国产成人精品www牛牛影视| 麻豆成人久久精品二区三区红 | 成人高清视频在线| 国产一区二区在线免费观看| 视频精品一区二区| 成人午夜视频在线| 国产精品综合在线视频| 美日韩一区二区三区| 91尤物视频在线观看| 成人精品鲁一区一区二区| 国产一区二三区好的| 免费观看30秒视频久久| 日韩精品每日更新| 91麻豆精品在线观看| 成人一级黄色片| 国产99精品视频| 国产精品69毛片高清亚洲| 久久99精品久久久| 青青青爽久久午夜综合久久午夜| 91在线云播放| 99国产精品国产精品久久| 福利电影一区二区| 国产传媒一区在线| 国产91精品精华液一区二区三区| 激情丁香综合五月| 国内成人精品2018免费看| 国内精品视频666| 国产乱人伦偷精品视频免下载| 韩国精品免费视频| 国产尤物一区二区| 国产精品亚洲一区二区三区妖精 | 日本视频一区二区三区| 欧美aa在线视频| 日本欧美韩国一区三区| 奇米影视在线99精品| 久久精品国产久精国产| 久久国产尿小便嘘嘘| 狠狠狠色丁香婷婷综合久久五月| 激情综合五月天| 国产精品亚洲一区二区三区妖精 | 秋霞午夜av一区二区三区| 美洲天堂一区二卡三卡四卡视频 | 蜜桃视频一区二区三区在线观看| 天堂蜜桃一区二区三区| 视频一区视频二区在线观看| 日本中文字幕一区二区视频 | 国产激情一区二区三区四区| 国产精品综合av一区二区国产馆| 国产一区二三区| 懂色av一区二区三区蜜臀| av中文字幕在线不卡| 日本成人在线视频网站| 激情图区综合网| 福利一区在线观看| 日本va欧美va欧美va精品| 黑人巨大精品欧美黑白配亚洲| 国产风韵犹存在线视精品| www.欧美亚洲| 美国一区二区三区在线播放| 国产精一区二区三区| 91小视频在线| 国产在线播放一区三区四| 99精品偷自拍| 久久www免费人成看片高清| 国产高清无密码一区二区三区| 99久久精品免费看| 国内外成人在线| 99久久免费精品| 国产一区二区美女诱惑| 91在线云播放| 国产乱码精品一区二区三区忘忧草| 波多野结衣中文字幕一区二区三区 | 日本不卡一区二区三区高清视频| 精品亚洲porn| 99精品视频一区二区三区| 激情久久久久久久久久久久久久久久| 从欧美一区二区三区| 老司机午夜精品| 99国产精品久久久久久久久久 | 日韩影院免费视频| 国产成人在线视频网址| 免费高清在线视频一区·| 成人免费视频免费观看| 精品夜夜嗨av一区二区三区| 91免费小视频| 成人国产一区二区三区精品| 国产真实精品久久二三区| 青青草原综合久久大伊人精品优势 | 国产一区二区在线观看免费| 91视频免费看| 不卡av免费在线观看| 国产精品主播直播| 另类调教123区| 日韩国产精品久久久久久亚洲| 国产成人av电影在线播放| 韩日av一区二区| 麻豆成人综合网| 日韩中文字幕亚洲一区二区va在线 | 日韩电影免费在线| av在线综合网| 国产91精品久久久久久久网曝门| 国模无码大尺度一区二区三区| 秋霞国产午夜精品免费视频| 91麻豆123| 日韩在线一二三区| 91麻豆精品一区二区三区| www.亚洲在线| www.亚洲人| 99国产精品一区| 99久久亚洲一区二区三区青草| 成人美女在线观看| 国产 欧美在线| 成人av片在线观看| 成人av在线电影| www.av精品| 视频一区视频二区在线观看| 日韩福利视频网| 麻豆国产欧美日韩综合精品二区| 蜜乳av一区二区| 精品一区二区三区在线播放视频| 久久av中文字幕片| 国产一区二区三区综合| 黄页视频在线91| 国产激情一区二区三区四区| 处破女av一区二区| 91丨porny丨在线| 日韩av二区在线播放| 日韩国产欧美三级| 久久99久久久久久久久久久| 久久激情五月激情| 国产一区二区精品在线观看| 国产成人免费在线| 99久久精品99国产精品| 免费美女久久99| 国产一级精品在线| av在线综合网| 麻豆91精品视频| 国产传媒日韩欧美成人| 99精品国产视频| 久久国产精品无码网站| 国产精品夜夜嗨| 91伊人久久大香线蕉| 精品一区二区三区久久久| 成人深夜在线观看| 青草av.久久免费一区| 国内欧美视频一区二区| 成年人午夜久久久| 久草这里只有精品视频| 成人永久免费视频| 麻豆中文一区二区| a级高清视频欧美日韩| 久久99久久精品| 99国产麻豆精品| 国产精品综合一区二区| 日韩成人一区二区三区在线观看| 国产精品影视天天线| 日本aⅴ免费视频一区二区三区| 国产毛片精品视频| 日本成人在线不卡视频| 国产白丝精品91爽爽久久| 免费观看30秒视频久久| 99久久久精品免费观看国产蜜| 国内一区二区在线| 日本一不卡视频| 9久草视频在线视频精品| 国产美女精品一区二区三区| 日本aⅴ亚洲精品中文乱码| 精品一区二区三区香蕉蜜桃 | 不卡的av中国片| 国产在线一区二区| 日精品一区二区三区| 盗摄精品av一区二区三区| 麻豆精品久久久| 日韩精品久久理论片| 风间由美性色一区二区三区| 麻豆精品国产传媒mv男同| 91首页免费视频| 成人久久18免费网站麻豆| 国产老肥熟一区二区三区| 久久精品国产成人一区二区三区| 99精品视频在线免费观看| 国产成人综合在线| 国产在线视频一区二区| 青青草精品视频| 日韩电影网1区2区| 日日夜夜精品视频天天综合网| 岛国一区二区在线观看| 国产成人亚洲综合色影视| 国产一区二区三区精品欧美日韩一区二区三区 | 久久成人久久爱| 美国毛片一区二区三区| 免费看日韩精品| 日本亚洲免费观看| 免费亚洲电影在线| 日韩av午夜在线观看| 91社区在线播放| 日韩影院在线观看| 日本免费在线视频不卡一不卡二| 日日夜夜精品免费视频| 天堂午夜影视日韩欧美一区二区| 91香蕉视频污| 99视频在线观看一区三区| 91亚洲大成网污www| 日韩成人一级片| 麻豆成人综合网| 久久国产生活片100| 韩国av一区二区三区在线观看| 狠狠色丁香婷综合久久| 国产精品888| www.在线欧美| 日韩国产一区二| 免费看黄色91| 国产一区二区h| k8久久久一区二区三区| 首页亚洲欧美制服丝腿| 理论片日本一区| 国产成人精品午夜视频免费| av一区二区三区黑人| 日韩二区三区在线观看| 精品午夜一区二区三区在线观看| 国产精品2024| 91亚洲精华国产精华精华液| 麻豆精品久久精品色综合| 国产精品一区二区你懂的| 成人禁用看黄a在线| 日韩不卡在线观看日韩不卡视频| 老司机午夜精品| 大陆成人av片| 另类小说综合欧美亚洲| 国产99久久精品|